Grade: 8 (Day 1)				Subject: Geometry			
Materials: Projector, computer, pencil, notes sheet				Technology Needed: Projector, computer,			
$\begin{array}{ll}\text { Instructio } \\ \square & \text { Dire } \\ \square & \text { Guid } \\ \square & \text { Socr } \\ \square & \text { Lear } \\ \square & \text { Lect } \\ \square & \text { Tech } \\ \square & \text { Other }\end{array}$	al Strategies: instruction practice ic Seminar ng Centers e ology integration (list)		Peer teaching/collaboration/ cooperative learning Visuals/Graphic organizers PBL Discussion/Debate Modeling	Large group activity Independent activity Pairing/collaboration Simulations/Scenarios Other (list) Explain:	\square Hands-onTechnology integrationImitation/Repeat/Mimic		
Standard(s) 8.G.1 Understand the properties of rotations, reflections, and translations by experimentation: a. Lines are transformed onto lines, and line segments onto line segments of the same length. b. Angles are transformed onto angles of the same measure. c. Parallel lines are transformed onto parallel lines. Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Given two congruent figures, describe a sequence of transformations that exhibits the congruence between them.				Differentiation Below Proficiency: Students with below proficiency will be able to ask questions during their independent work time. I will go around and make sure they are on track and understand the content and give extra help when needed. Above Proficiency: Students will work on their own through the practice problems. If they have questions they may ask. Approaching/Emerging Proficiency: Students will work on their own though the practice problems. If they have questions they may ask. Modalities/Learning Preferences: Visual, hands on			
Objective(s) Students can define what translations, rotations, and reflections are. Students can demonstrate translations, rotations, and reflections on a graph. Students can apply translations, rotations, and reflections of shapes. Bloom's Taxonomy Cognitive Level: Explain, show, manipulate.							
Classroom Management- (grouping(s), movement/transitions, etc.) Students will remain at their desks for the whole day as they listen to the lesson and do work on their own.				Behavior Expectations- (systems, strategies, procedures specific to the lesson, rules and expectations, etc.) Students know the appropriate behavior. They do not talk when the teacher is talking. They will work on the example problems quietly.			
Minutes Procedures	Procedures						
0	Set-up/Prep: Note sheet is already prepared.						
5	Engage: (opening activity/ anticipatory Set - access prior learning / stimulate interest /generate questions, etc.) https://www.youtube.com/watch? v=543v9XItkAQ We will watch this video not related to math as an opening activity.						
25	Explain: (concepts, procedures, vocabulary, etc.) We will follow the notes sheet and I will project it onto the white board. Today we are going to be talking about transformations. The objectives for today are Students can define what translations, rotations, and reflections are. Students can demonstrate translations, rotations, and reflections on a graph. Students can apply translations, rotations, and reflections of shapes. At the end of todays lesson, you will be able to demonstrate these skills. First the word transformation means to chance. There are some definitions we will need to know for today. First when we move the image without changing shape, size, or orientation it is called a translation. We can look at the image on the top left. The rectangle is translated into a different spot. It does not change its shape or size, but it is moved into a different place. Rotation is when we rotate an image by some degree. The image in the top right shows us a rotation. The rectangle in being rotated at the center, which is this point right here and it was rotated 90 degrees. Next when we flip an image along a line (like a mirror) it is called a reflection. When we look at the bottom picture the lone right here is our mirror and the triangle is being reflected over it. Let's look at examples. Example one is asking us to rotate the rectangle 90 degrees clockwise at the labeled center which is the origin, where the x and y axis meet. The center will stay in the same position, and we will rotate around the center. This is what the rectangle will look like when we rotate it 90 degrees.						

Lesson Plan Template

	Now you try and do this next example, rotate the triangle counterclockwise 90 degrees. Notice that the same and size of the triangle does not change. We are just rotating it at the given center. Example three is asking us to reflect the pentagon over the y-axis. We want to show the reflection. Let's look at one point on the pentagon first. We see that it is two points away from the axis. So, we will put a point two points away from the axis on the other side. We will do that until we have enough points to make our pentagon. You try and do this next one. You see that one of the points is one away from the axis and another is two and this is how it reflects. So now we will look at some translation. It is asking us to translate the square up 4 and to the right 5. Let's straight at one of the corners. We will go up 4 and to the right 5. We will do that with all the corners and the end results looks like this. Try this next example on your own.
$\mathbf{1 5}$	Explore: (independent, concreate practice/application with relevant learning task -connections from content to real-life experiences, reflective questions- probing or clarifying questions) These next four problems I want you to work on them on your own and see if you can get to the right transformations. If you have any questions, please ask and l'll be walking around to make sure you understand.
$\mathbf{5}$	Review (wrap up and transition to next activity): Tomorrow we will be going an online activity related to transformations. Have a great day!
Formative Assessment: (linked to objectives)	
Progress monitoring throughout lesson- clarifying questions,	
check- in strategies, etc.	
Consideration for Back-up Plan:	
Workday	

Lesson Plan Template

Lesson Plan Template

	Explore the transformation website. I want you to complete each level before continuing onto the next one. There are different levels that vary in difficulty. If you have questions, please ask. If you come across something that you do not know or understand I want, you to look up the information and s=try to problem solve on your own. If you are really stuck, I will help answer questions.		
5	Review (wrap up and transition to next activity): Tomorrow we are going to get into talking about angles and angle sums.		
Formative Assessment: (linked to objectives) Progress monitoring throughout lesson- clarifying questions, check- in strategies, etc. I will be walking around to see if anyone needs help and are staying on task. If I see students not progressing at a good pace I will sit down and help them.	Summative Assessment (linked back to objectives) End of lesson: quiz, unit test.		
If applicable- overall unit, chapter, concept, etc.:		\quad	Consideration for Back-up Plan:
:---			
Work time			
Reflection (What went well? What did the students learn? How do you know? What changes would you make?):			

Lesson Plan Template

| 15 | Explore: (independent, concreate practice/application with relevant learning task -connections from content to real-life
 experiences, reflective questions- probing or clarifying questions)
 Now I want you to work on these next 6 problems by yourself. If you have any questions I will be walking around so please ask. |
| :---: | :---: | :---: |
| 5 | Review (wrap up and transition to next activity):
 Tomorrow we will have a quiz but we will review a little beforehand. |
| Formative Assessment: (linked to objectives)
 Progress monitoring throughout lesson- clarifying questions,
 check- in strategies, etc.
 Will walk around the room to make sure they are staying on task
 and help to see if students are struggling. | Summative Assessment (linked back to objectives)
 End of lesson:
 Quiz, unit lest
 If applicable- overall unit, chapter, concept, etc.: |
| Consideration for Back-up Plan:
 Worktime | |
| Reflection (What went well? What did the students learn? How do you know? What changes would you make?): | |

Lesson Plan Template

Day 4 -Quiz Unit 5 quiz
Name: \qquad
You will have 30 min to complete this quiz.
Read each question carefully and show your work!!!!
Good luck ()

1. Rotate the Triangle 90 degrees counterclockwise at the marked center.

2. Reflect the pentagon over the x -axis.

3. Translate the square down 4 and to the right 5 .

4. Dilate the rectangle with scale factor 2.

5. Find the missing angle measurement.

6. Find the exterior angle measurement.

7. Find the missing angle measurements.

Unit 5 quiz ANSWER KEY
Name: \qquad
You will have 30 min to complete this quiz.
Read each question carefully and show your work!!!!

Good luck ()

8. Rotate the Triangle 90 degrees counterclockwise at the marked center.

9. Reflect the pentagon over the x-axis.

10. Translate the square down 4 and to the right 5 .

11. Dilate the rectangle with scale factor 2.

12. Find the missing angle measurement.

13. Find the exterior angle measurement.

14. Find the missing angle measurements.

$$
\begin{array}{ll}
1=30^{\circ} & 5=150^{\circ} \\
2=150^{\circ} & 6=150^{\circ} \\
3=150^{\circ} & 7=30^{\circ} \\
1=30^{\circ} &
\end{array}
$$

Grade: 8 Day 5				Subject: Geometry		
Materials: White board				Technology Needed: Power point, computer		
	al Strategies: instruction practice ic Seminar ing Centers ology integration (list)		Peer teaching/collaboration/ cooperative learning Visuals/Graphic organizers PBL Discussion/Debate Modeling	Large group activity Independent activity Pairing/collaboration Simulations/Scenarios Other (list) Explain:	Hands-onTechnology integrationImitation/Repeat/Mimic	
Standard 8.G.6 Exp 8.G.7 Ap lengths in two and 8.G.8 Ap two poin	in a proof of the the Pythagorean ight triangles in r ree dimensions. the Pythagorean in a coordinate sy		ean Theorem and its converse. m to determine unknown side and mathematical problems in m to find the distance between	Differentiation Below Proficiency: During worktime I will go around and help those who are struggling. They will get extra help from me or their peers. Above Proficiency: Be on their own and may ask questions when needed Approaching/Emerging Proficiency: Be on their own and may ask questions when needed. Modalities/Learning Preferences: Visual, hands on		
Objective(s) Students can solve unknown side lengths using the Pythagorean theorem. Students can use the Pythagorean theorem to find distances between two points.						
Classroom Management- (grouping(s), movement/transitions, etc.) Students will stay in their seats when they are working.				Behavior Expectations- (systems, strategies, procedures specific to the lesson, rules and expectations, etc.) Students know to stay at a quiet level when th3ey are working and to not talk when the teacher is talking.		
Minutes Procedures	Procedures					
0	Set-up/Prep: The premade worksheet with students.					
10	Engage: (opening activity/ anticipatory Set - access prior learning / stimulate interest /generate questions, etc.) Hand back quizzes We will go over the quiz from yesterday. Go over the most missed problems.					
25	Explain: (concepts, procedures, vocabulary, etc.) Today we are talking about Pythagorean theorem. $a^{2}+b^{2}=c^{2}$ It is one of the most well-known theorems. The theorem states that the sum of the squares on the legs of a right triangle are equal to the square on the hypotenuse. We can use this formula to find the distance between two points when it is unclear on a graph. I will be going over a proof of the theorem and a converse to it. First let's look at the right triangle ACB with sides a, b, and c. We will construct a square with sides c and then put the triangle ACB all around it to form a bigger square. We will compare the areas written different ways. The first area we have $(a+b)^{2}=a^{2}+2 a b+b^{2}=$ Area. The second area we come up with is 4 triangles plus the square. This gives us $4 \cdot\left(\frac{a \cdot b}{2}\right)+c^{2}$ We can set them equal because it's the area of the same square and by simplification we get our Pythagorean theorem. So, it is proved. Next, we will do a proof with a converse. Lets construct a right triangle DEF such that $\mathrm{EF}=\mathrm{BC}, \mathrm{DF}=\mathrm{AC}$, and angle $\mathrm{EFD}=90$ degrees. 1. We assume triangle $A B C$ is not a right triangle. 2. $E F=B C$ and $D F=A C$ by construction. 3. The measure of angle EFD=90 degrees by construction. 4. $(E F)^{\wedge} 2+(D F)^{\wedge} 2=(E D)^{\wedge} 2$ by the Pythagorean theorem. 5. $(B C)^{\wedge} 2+(A C)^{\wedge} 2=(A B)^{\wedge} 2$ which is given					

	6. $(E F)^{\wedge} 2+(D F)^{\wedge} \mathbf{2}=(A B)^{\wedge} \mathbf{2}$ by substitution 7. $(E D)^{\wedge} 2+(A B)^{\wedge} 2$ 8. $E D=A B$ 9. Triangle DEF is congruent to triangle ABC 10. Angle EFD is congruent to angle BAC 11. The measure of angle EFD = the measure 12. So, angle $B C A=90$ degrees which contra Let's looks at examples now. Example 1 wants us to find the missing sid You try example 2. You should have gott Example 4 gives us the length of the hyp equation and we will get the square root Example 5 is a word problem. Let's first kite and the kite is 20 ft above the groun and get 25 ft for the rope length. You try example 6. You should get 13 ft f Now we want to find the distance betwe triangle and find the leg lengths. We see distance between the two points is 10 . You try the next example. You should ge	-side-side postulate. BCA which equal 90 degrees. h. We can plug our numbers into the equation. Which gives us $\mathrm{c}=10$. You try example 3 you should get $\mathbf{w = 2 4}$. and we need to find the leg length. We can plus the numbers into the icture. We have Domonic flying a kite. We know he is 15 in front of the ant to know how long the kite rope is. We can plug into the equation ong the ladder is. points. We will use the same concept we have been doing. Lets draw a th of the legs are 6 and 8 . We will plug those into the equation and the
10	Explore: (independent, concreate practice/applicatior experiences, reflective questions- probing or clarif Students will do the examples I provide during the	helevant learning task -connections from content to real-life stions) or engagement.
5	Review (wrap up and transition to next activity): Talk a little bit about the project and what tomorrow	like.
Formative Assessment: (linked to objectives) Progress monitoring throughout lesson- clarifying questions, check- in strategies, etc. See if students are getting the example problems down. Consideration for Back-up Plan:		Summative Assessment (linked back to objectives) End of lesson: Unit test If applicable- overall unit, chapter, concept, etc.:
Reflection (What went well? What did the students learn? How do you know? What changes would you make?):		

Lesson Plan Template

Day 6 \& 7 Pythagorean Theorem Project and Presentation.

You and another person will pick a Pythagorean proof that will be demonstrated Infront of the class.

Today you will get a partner and look up online the different proofs of the Pythagorean Theorem.

When you have picked a proof, you will come talk to me and I will approve it.

Once I approve it you will do the research:

Who came up with it?

When was it done?

Where was it done?

How is it done?

When you answer these questions, you will then create the proof yourself. You can do a poster board describing the proof and present that. You can create a cut of out of the proof with colored construction paper and then demonstrate it to the class. You can make a power point presentation.

Tomorrow, we will present them Infront of the class. Each presentation should take no longer than 5-10 minutes.

Presentation day.

Students will be graded on participation and if the proof is presented right.

Lesson Plan Template

Grade: 8 (Day 8)			Subject: Geometry
Materials: Projector, computer, pencil, paper			Technology Needed: Computer, power point
Instructional Strategies: \square Direct instruction \square Peer teaching/collaboration/ \square Guided practice cooperative learning \square Socratic Seminar \square Visuals/Graphic organizers \square Learning Centers \square PBL \square Lecture \square Discussion/Debate \square Technology integration \square Modeling \square Other (list)			Guided Practices and Concrete Application: Large group activity Hands-on Independent activity Technology integration Pairing/collaboration Imitation/Repeat/Mimic Simulations/Scenarios Other (list) Explain:
Standard(s) 8.G.9 Know the formulas for the volume of cones, cylinders, and spheres. Use the formulas to solve real world and mathematical problems.			Differentiation Below Proficiency: They can work with a partner while going through the practice problems. If I see they are not understanding the content, I will work with them personally until they get it down.
Objective(s) Students can define the formulas for the volume of cylinders, cones, and spheres. Students can solve real world problems with volumes of cylinders, cones, and spheres. Students can apply the formulas for the volume of cylinders, cones, and spheres. Bloom's Taxonomy Cognitive Level: Explain, show, manipulate.			Students will be on their own and may ask questions when needed. Approaching/Emerging Proficiency: Students will be on their own and may ask questions when needed. Modalities/Learning Preferences: Visual, hands on
Classroom Management- (grouping(s), movement/transitions, etc.) Students know to go from question to question.			Behavior Expectations- (systems, strategies, procedures specific to the lesson, rules and expectations, etc.) Students will be remined to stay at a quiet level. If not, we will end the activity.
Minutes Procedures			
0	Set-up/Prep: Problems will be placed around the room.		
5	Engage: (opening activity/ anticipatory Set - access prior learning / stimulate interest /generate questions, etc.) We will talk about the presentations yesterday. I will ask if it they liked the activity and get some feedback. .		
10	Explain: (concepts, procedures, vocabulary, etc.) Today we are talking about the volumes of cylinders, cones, and spheres. The formulas are here. Make sure you write these down. The volume of a cylinder is: $V=\pi r^{2} h$ The volume of a cone is: $v=\frac{1}{3} \pi r^{2} h$ The volume of a sphere is: $V=\frac{4}{3} \pi r^{3}$		
30	Explore: (independent, concreate practice/application with relevant learning task -connections from content to real-life experiences, reflective questions- probing or clarifying questions) I have set up problems all around the room. You will go from problem to problem and answer each one. Keep all the problems written down in your notebook and you can check your answers when you have completed them. If you do not get though all the problems that's okay, I just want you to get practice in. (Problems are on the notes sheet)		
5	Review (wrap up and transition to next activity): I will talk about how we will have a review tomorrow and then the next day we will have our unit test.		

Lesson Plan Template

Formative Assessment: (linked to objectives) Progress monitoring throughout lesson- clarifying questions, check- in strategies, etc.	Summative Assessment (linked back to objectives) I will be around the room checking for understanding. Unit test	
Consideration for Back-up Plan: Workday		
If applicable- overall unit, chapter, concept, etc.:		

Lesson Plan Template

Day 9 - Review Day
You decide what you need to review. Here are websites for practice. Take your review day for yourself.

Review Day

Transformations:

https://www.transum.org/software/SW/Starter_of_the_day/Students/Transformations/Draw.asp?Level=2

Angle Sum

https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-geometry/cc-8th-triangle-angles/e/triangle_angles_1

Exterior angle

https://www.khanacademy.org/math/in-in-grade-9-ncert/xfd53e0255cd302f8:lines-and-angles/xfd53e0255cd302f8:angle-sum-property-of-a-triangle/e/exterior-angle-property-problems

Transversal

https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-geometry/cc-8th-angles-between-lines/e/parallel lines 1

Similar Triangles

https://www.khanacademy.org/math/geometry/hs-geo-similarity/hs-geo-triangle-similarity-intro/e/similar_triangles_1

Pythagorean Theorem

https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-geometry/cc-8th-pythagorean-theorem/e/pythagorean_theorem_1

Volume of cylinders, cones, and spheres

https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-geometry/cc-8th-volume/e/volume-of-cylinders--spheres--and-cones-wordproblems

Day 10 - Unit Test

UNIT 5 TEST

Name:
You will have 50 minute to complete this 25 questions test.
You can only you're a pencil, calculator, and YOURSELF.
Make sure you show ALL your work as you can get partial credit.
Make sure you read all the directions.
GOOD LUCK! ()

Answer questions 1-8 on the graph.

1. Translate the circle up 6 and to the left 3.

2. Translate the triangle by vector $\binom{4}{5}$.

3. Reflect the hexagon over the y - axis.

4. Reflect the moon over the given green axis.

5. Rotate the rectangle 90 degrees clockwise at the marked center.

6. Rotate the trapezoid 90 degrees counterclockwise at the marked center.

7. Dilate the triangle by scale factor of 2 .

8. Dilate the square by scale factor of $1 / 2$.

For questions 9-15 find the missing angle measures.
9. Find the missing angle in the triangle.

10. Find the missing angle in the triangle.

11.Find the exterior angle.

12. Find the exterior angle.

13. Find all the missing angles.

14 . Find all the missing angles.

For questions 15-16 circle true or false for the following statement.
15. True or false? The two triangles are congruent.

16. True or false? The two triangles are congruent.

For questions 17-19 find the missing side length.
17 . Find the missing side length of the right triangle.

12
18. Find the missing side length of the right triangle.

19. Jimmy is flying a kite. The kite is 20 ft off the ground and Jimmy is 15 from the kite. How long is the kite rope?

For questions $20-25$ find the volume. Round to the nearest hundredth.
20 . Find the volume of the cylinder.

21. Find the volume of the cylinder.

13
22. Find the volume of the cone.

23. Find the volume of the cone.

24.Find the volume of the sphere.

25 . Find the volume if the sphere.

UNIT 5 TEST - ANSWER KEY

Name: \qquad
You will have 50 minute to complete this 25 questions test.
You can only you're a pencil, calculator, and YOURSELF.
Make sure you show ALL your work as you can get partial credit.
Make sure you read all the directions.
GOOD LUCK! ©
26. Translate the circle up 6 and to the left 3.

27. Translate the triangle by vector $\binom{4}{5}$.

28. Reflect the hexagon over the y - axis.

29. Reflect the moon over the given green axis.

30. Rotate the rectangle 90 degrees clockwise at the marked center.

31. Rotate the trapezoid 90 degrees counterclockwise at the marked center.

32. Dilate the triangle by scale factor of 2 .

33. Dilate the square by scale factor of $1 / 2$.

For questions 9-15 find the missing angle measures.
34. Find the missing angle in the triangle.

35. Find the missing angle in the triangle.

36.Find the exterior angle.

37.Find the exterior angle.

38. Find all the missing angles.

For questions 15-16 circle true or false for the following statement.
40. True or false? The two triangles are congruent.

41. True or false? The two triangles are congruent.

For questions 17-19 find the missing side length.
42. Find the missing side length of the right triangle.

43. Find the missing side length of the right triangle.

44. Jimmy is flying a kite. The kite is 20 ft off the ground and Jimmy is 15 from the kite. How long is the kite rope?

For questions 20-25 find the volume. Round to the nearest hundredth.
45 . Find the volume of the cylinder.

cubic cm
46. Find the volume of the cylinder.

$$
v=1021.02 \text { cube }
$$

47. Find the volume of the cone.

$$
v=25.13 \mathrm{cone}
$$

48. Find the volume of the cone.

$$
V=12.57 \text { cubist }
$$

49. Find the volume of the sphere.

50. Find the volume if the sphere.

$$
V=113.1
$$

